
This  notebook  provides  step-by-step  derivation  of  the  Method  of  Manufactured  Solutions  (MMS)  for  an

extremely high-shear prescribed deformation.

This is the working notebook that was ultimately summarized in Appendix 1 of reference [1].

This notebook includes commands to generate the following pictures of a special deformation:



As  seen,  this  deformation  is  designed  so  that  all  points  in  the  ENTIRE domain undergo  a  state  of  simple

shear along with superimposed rotation.  As such,  this motion is  an excellent  choice to test  large-deforma-

tion numerical codes for robustness and and accurate in their solution to the equations of motion as well as

testing  the  constitutive  model  (and/or  its  implementation)  for  proper  behavior  under  extraordinarily  large

shears (like what might be expected near a penetrator) and under superimposed rotation (as required from

material frame indifference yet shockingly often missed in constitutive model testing). 

The basic  idea behind MMS is  to  dream up an interesting deformation like the one in  this  notebook,  from

which you can then derive corresponding kinematics quantities, such as

displacement

velocity

accelerations

deformation gradient tensor
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deformation gradient tensor

strain and strain rate

Jacobian of the deformation (from which evolving mass density is then known)

Knowing  these  known at  all  locations,  and  also  knowing  your  choice  of  an  elastic  constitutive  model,  you

should  have  enough  information  to  determine  the  corresponding  stress  tensors  required  to  induce  the

motion. In this notebook, we avoid introducing any particular constitutive model until the very last step. This

way, the bulk of the work can be applied to any arbitrary choice of isotropic elastic constitutive model (or any

inelastic  one  if  unloading  is  disallowed).  Because  this  notebook  designs  a  very special  material  motion  in

which all points are undergoing a state of varying degrees of simple shear with varying degrees of superim-

posed  rotation,  we  can  write  the  stress  state  generically  as  a  function  of  the  shear  strain  at  any  given

location.  The  detail  of  the  function  would  come  from  considering  your  choice  of  constitutive  model  in  the

special  case  of  simple  shear  without  superimposed  rotation,  and  (as  further  clarified  below)  it  is  therefore

treated as a known generic function. Simple shear is simple enough that this function can be found analyti-

cally  for  most  material  models,  but  even  that  isn’t  needed  --  if  you  can’t  get  it  analytically,  then  you  can

generate  it  numerically and  represent  it  via  a  lookup table  (although such  an approach  has  the  disadvan-

tage of  not  properly testing your constitutive model for  things like the host  code failing to send the correct

strain definition as input). 

Once the local material motion is applied along with the elastic constitutive model to find the local stress at

each  location  in  the  domain  of  the  manufactured  material  motion,  the  next  step  is  to  then  evaluate  the

divergence  of  stress.  Recalling  that  the acceleration  was a previously computed  kinematic  property of  the

MMS, and now knowing the stress divergence,  the corresponding body force may be determined from the

equations of motion! That’s what this notebook does. 

An MMS verification test is performed in a host (such as an FEM code) as follows:

1. use the analytically determined initial particle velocities (from this notebook) to initialize the state 

(the MMS in this notebook is designed to have a zero initial velocity, alleviating the burden of this step)

2. use the analytically determined body force (from this notebook) to drive material motion

3.  use  the  analytically  determined  surface  tractions  (from  this  notebook)  as  part  of  what  drives  the

material motion 

(the MMS in this notebook is designed to have surface tractions all  zero, alleviating the burden of this

step)

4. Run the host code to extract displacement as a function of time and position

5.  Compare  the  computed  displacement  to  the  MMS  analytical  displacement  (from  this  notebook)  to

evaluate 

simulation errors, which (after resolving constitutive model and algorithm bugs that 

are often revealed by doing an MMS simulation in the first place) are ultimately the result of 

mesh refinement errors.

6. Redo the computations on increasingly refined meshes to obtain a rational assessment 

of the solution algorithm’s rate of convergence in non-trivial heterogenous material motion.

Note:  because  this  particular  MMS will  involve  motion  inside  a  ring  such  that  material  strain  is  identically

zero at the boundary of that ring, a host code has two options:

Option A. Run a simulation of just the ring itself using zero traction at the boundary:
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Option A. Run a simulation of just the ring itself using zero traction at the boundary:

 

 

 

Option B. Run a simulation of a domain in which there is material both inside and outside the ring:

This  is  a  convenient  option  for  Eulerian  codes  that  always  run  all  simulations  on  rectangular

domains.

This option is also a nice way to clearly see simulation errors, because any grid motion 

outside the ring is a visible indicator of error -- the exact solution has no motion whatsoever!

Now  let’s  get  started  working  out  the  kinematics  for  the  “Generalized  Vortex”  rotation  of  material  points

around the ring illustrated above...

For this MMS, we consider a mapping from initial position X�  to current position x� given by

x� �Q�� .X�
where Q��  is an orthogonal tensor with components
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�Q��� �
Cos�Α� �Sin�Α� 0

Sin�Α� Cos�Α� 0

0 0 1

This notebook allows the rotation angle to vary with radial coordinate R, but not with angular coordinate.

The rotation angle is also allowed to vary with time. Specifically,

Α[R,t]=g[t]h[R]

where the functions g and h are given (specific examples are selected below for the visualizations, but they

are  kept  generic  for  now in  order  to  give  as  much  generality  as  possible  to  the  MMS  formulas  while  still

keeping them easy to work with).  The function h[R] controls the shape of the bump in motion, illustrated by

the black line in the first image above. The g[t] function controls the magnitude. 

If  the  g[t]  function  has  the  property  that  g[0]  =  0,  then  it  follows  that  there  is  no  deformation  in  the  initial

state. If it has a zero slope at time zero so that g’[0] = 0, then the material has no initial velocity, thus mak-

ing it easier to test a code by not requiring it to set up a complicated initial velocity field.

If the h[R] function has the property that its value and slope are both zero at the inner and outer radii of the

ring, this MMS will entail zero traction at the ring boundary, thus simplifying the testing of the code. The h[R]

function can, of course, later be changed to have a nonzero slope at the boundaries to test the code’s ability

to correctly impose shear tractions.  In that  case,  the appropriate shear traction would be inferred from the

constitutive model in simple shear (beyond scope of this notebook).

Keeping the Α[R,t] function generic, the goal of this notebook is to find that body force field corresponding to

this motion.

Note that
d Q��
dΑ � A��. Q�� , 

where A�� is the axial tensor associated with the axis of rotation. Namely,

A��=

0 �1 0

1 0 0

0 0 0

This is simply a counter-clockwise rotation of 90� in the plane of motion.

Thus, for any scalar s, 
�Q��
� s

�
d Q��
d Α

�Α
� s

� A��. Q��
�Α
� s

This lemma will be used in upcoming formulas whenever any derivative of the Q
	

 tensor is needed.

Letting e�r
, e�Θ, and e�z

 denote the spatial cylindrical basis vectors, notice (for future reference):

A�� � e�r
=e�Θ

A�� � e�Θ=�e�r

A�� � e�z
=0�

Velocity and acceleration
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Recall that

x� �Q�� .X�
The velocity is the time derivative holding X�  constant:

v� �  �x�
� t

X�
�

�Q��
� t

.X� � A��. Q��
�Α
� t

.X� � g '�t� h�R� A��. Q�� .X�
or 

v� � g '�t� h�R� A��. x�

The acceleration is

a� � g ''�t� h�R� A��. x� � g '�t� h�R�A��. v�
or

a� � g ''�t� h�R� A��. x� � �g '�t� h�R� �2 x�
The spatial components of acceleration are

ar �g ''�t� h�R� A��. x� � �g '�t� h�R� �2 x�
Noting that  x� � r e�r

� R e�r
, we get familiar equations for circular motion:

v� �R Ω e��,  

a� �R Ω� e�� �R Ω2 e�r

where

Ω=g'[t] h[R]

and

Ω� =g''[t]  h[R]

Deformation gradient

Let  E�R
,  E��, and E� z

 denote the reference cylindrical basis vectors (i.e.,  those corresponding to a particle’s

initial position X�  on the path instead of its current position x�).

The reference gradient of the rotation angle is given by
d Α
d X�

� g�t� d h

d R

d R

d X�
� g�t� h '�R� E� R

Recall that 
d Q��
dΑ � A��. Q��

The deformation gradient is
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The deformation gradient is

F�� � d x�
d X�

�
dQ�� . X� 

d X�

�Q�� � X� .
d Q��

T

d X�

�Q�� � X� .
d Q��

T

dΑ
d Α
d X�

� Q�� � X� .
d Q��

T

dΑ g�t� h '�R� E� R

� Q�� � g�t� h '�R�
d Q��
dΑ .X� E� R

� Q�� � g�t� h '�R� A��. Q�� .X�  E� R

�Q�� . I�� � g�t� h '�R� A��.X�  E� R


�Q�� . I�� � g�t�R h '�R� E� � E� R


In the penultimate step, we used the easily confirmed fact that  Q
T.A. Q = A.

In the ultimate step, it was observed that A��.X� � A��.R E� R
 = R A��. E�R

� R E��

The result

F�� �Q�� . I�� � g�t�R h '�R� E� � E� R


is  a state of simple shear in the � direction with shear plane tangent to the circumference, and with superim-

posed rotation.  

Define

Ξ�R� � 1

2
R h'[R]

Then the large-deformation shear strain is

Ε�t, R� � g�t� Ξ�R�

The deformation gradient may be written as

F�� �Q�� .q��.��� .q��
T

where

��� � I�� � 2 g�t� Ξ�R� E� 2
E� 1

q��=

Cos��� �Sin��� 0

Sin��� Cos��� 0

0 0 1

Note that 

F�� � r��.��� .q��
T

where

r��=

Cos��� �Sin��� 0

Sin��� Cos��� 0

0 0 1

Note that ���  is independent of the angular coordinate, and 
d ���
d R

� 2 g�t� Ξ '�R� E� 2
E� 1
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���
Note that q�� is independent of the radial coordinate, and 

d q��
d� � A��.q��

Note that r�� depends on both angular and radial coordinates.  Noting that � = �+Α = �+g[t]h[R], we have

d r��
d � � A��. r��
� r��
��

R

� d r��
d �

��
�� � A��. r��

� r��
�R �

� d r��
d �

��
�R

� g�t� h '�R� A��. r��
Using all  of  these things,  the gradient  of  the deformation gradient  (which is  here for  completeness to  help

any future efforts to include gradient plasticity, but isn't used again here in this notebook) is

d F��
d X�

� �F��
�R �

E�R
� 1

R

�F��
�� R

E��

� g�t� h '�R� A��.F�� � r�� .2 g�t� Ξ '�R� E� 2
E� 1

.q��
T E�R

� 1

R
A��.F�� � F��.A��T E��

� g�t� h '�R� A��.F�� � 2 g�t� Ξ '�R� e� � E�R
E�R

� 1

R
A��.F�� � F��.A��

T E��

�R Cos�Α� Cos��� � R Sin�Α� Sin���, R Cos��� Sin�Α� 	 R Cos�Α� Sin���, 0


Recall that

 ��� � I�� � 2 Ε�t, R� E� 2
E� 1

This is a pure shear.  Suppose that the material is homogeneous and isotropic.  Let ���  denote the second-

Piola Kirchhoff  (PK2) stress associated with the deformation ��� .   Then, for an isotropic material,  it  follows

that the PK2 stress associated with F�� must be

S�� � q��.���.q��
T

The first Piola-Kirchhoff (PK1) stress is then

T�� � F��.S�� � Q�� .q��.��� .q��
T .q��.���.q��

T  � Q�� .q��.��� .���.q��
T  �Q�� .q��.��� .q��

T

or

T�� � r��.��� .q��
T

where 

��� ��.�
is  the PK1 stress associated with deformation ��� ,  which depends on R  indirectly through dependence

of the shear strain on R, but this reference PK1 stress is not dependent on the angular coordinate. Thus
d ���
d R

�
d ���
d Ε

d Ε
d R

�
d ���
d Ε g�t� Ξ '�R�

Divergence of PK1

The gradient of PK1 stress is
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The gradient of PK1 stress is
d T��
d X�

� �T��
�R �

E�R
� 1

R

�T��
��

R

E��

�
� r��.��� .q��

T

�R �
E�R

� 1

R

� r��.��� .q��
T

��
R

E��

� g�t� h '�R� A��. r��.��� .q��
T � g�t� Ξ '�R� r��.

d ���
d Ε .q��

T E�R
� 1

R
A��. r��.��� .q��

T � r��.��� .q��
T .A��

T E��

� g�t� h '�R� A��.T�� � g�t� Ξ '�R� r��.
d ���
d Ε .q��

T E�R
� 1

R
A��.T�� � T��.A��T E��

The reference divergence of PK1 stress is then

Ρ0�a� � b�� � DIV�T��� � g�t� h '�R� A��.T��.E�R
� g�t� Ξ '�R� r��.

d ���
d Ε .E�1

� 1

R
A��.T��.E�� � T��.E�R



The spatial radial component is

Ρ0�ar � br � � �g�t� h '�R� e��.T��.E�R
� g�t� Ξ '�R� E�1

.
d ���
d Ε .E�1

� 1

R
�e��.T��.E�� � e�r

.T��.E�R


� �g�t� h '�R� �21 � g�t� Ξ '�R� d �11

d Ε  � 1

R
��11 � �22�

� Ξ '�R� d �11

d Ε � h '�R� �21 g�t� � 1

R
��11 � �22�

The spatial tangential component is

Ρ0�a� � b�� � g�t� h '�R� e�r
.T��.E�R

� g�t� Ξ '�R� E�2
.

d ���
d Ε .E�1

� 1

R
e�r

.T��.E�� � e��.T��.E�R


� g�t� h '�R� �11 � g�t� Ξ '�R� d �21

d Ε  � 1

R
��12 � �21�

� Ξ '�R� d �21

d Ε � h '�R� �11 g�t� � 1

R
��12 � �21�

NOTE KEY ADVANTAGE:   This result  is  expressed in terms of the CARTESIAN components of  the PK1

stress corresponding to a homogeneous pure shear.  That means you only need to evaluate the constitutive

model for that special case. 

Finding body force

Recall that  

v� �R Ω e��,  

a� �R Ω� e�� �R Ω2 e�r

where

where Ω =g'[t] h[R]

Ω�  =g''[t]  h[R]

Thus

br � �R �g '�t� h�R��2 � 1

Ρ0

 Ξ '�R� d �11

d Ε � h '�R� �21 g�t� � 1

R
��11 � �22�
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� � � � � � �� � Ρ  Ξ � � Ε � � � �  � � � �� � � �
b� �R g ''�t� h�R� � 1

Ρ0

Ξ '�R� d �21

d Ε � h '�R� �11 g�t� � 1

R
��12 � �21�

Algorithm

Procedure:

1. Select g[t] and h[R] functions

2. Select an isotropic elastic constitutive model

 Work out the analytical solution for the Cartesian components of the PK1 stress,

��� �
�11 �12 �13

�21 �22 �23

�31 �32 �33

corresponding to a homogeneous deformation with deformation gradient

��� �
1 0 0

2 Ε 1 0

0 0 1

3. Substitute the result into the above formulas for br  and b�  and evaluate the result using

Ε � 1

2
g�t�R h '�R�  = g�t� Ξ�R�

This will give for br  and b�  as functions of time and radius.

4. Evaluate the body force vector by

b� � br e�r
� b� e��

If Cartesian component are desired, evaluate this body force vector using

e�r
�Cos���E�1

�Sin���E�2

e�� � �Sin���E�1 �Cos���E�2

where

� = � + g[t] h[R]

Specific study

The above sections  provide all  of  the analytical  work  phrased in  terms of  generic  functions  g[t],  h[R],  and

whatever  the  isotropic  elastic  constitutive  model  predicts  for  the  �11�Ε�, �22�Ε�,  and  �21(Ε)  PK1  stress

components  in  response  to  a  deformation  gradient  

1 0 0

2 Ε 1 0

0 0 1

.   In  other  words,  the  body  force  is  deter-

mined  at  this  point  entirely in  terms of  these five user-controllable  functions.   This  “specific  study”  section

now makes specific choices for the g[t] and h[R] functions in order to generate graphics of the MMS deforma-

tion.  

In[1]:= ClearAll�"Global`�"�
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Step 1: select  formula for time and radial dependence of the rotation angle

In[2]:= g �.
h �.

Set g[t] such that g=1 when t=tref. 

In[4]:= tref � 1;

g�t�� :� t

tref

Plot�g�t�, �t, 0, tref��

Out[6]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

In[7]:= tref � 1;

g�t�� :� SinΠ t

tref


Plot�g�t�, �t, 0, tref��

Out[9]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

In[10]:= Α � g�t� h�R�
Out[10]= h�R� Sin�Π t�

Define the radial value at the center of the ring:

c � 1

2
�a � b�
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�
2
� � �

define a normalized radial location variable,

R � R�c

b�c

Note that

R � �1 at R=a

R � �1 at R=b

define

Η � c0 � c2 R
2 � c4 R

4

d Η
d R

 = 2 c2 R � 4 c4 R
3

Demand that

Η[0]=1 " c0=1

Η[1]=0 " c0 � c2 � c4=0

Η'[1]=0 " 2 c2 � 4 c4=0

Thus

c0=1

c4=1

c2=-2

The following plot confirms that this function is zero and has zero slope at its endpoints:

In[110]:= Η�Rbar�� :� 1 
 2 Rbar2 � Rbar4
Plot�Η�Rbar�, �Rbar, 
1, 1��

Out[111]=

�1.0 �0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Perform a change of variables to get a similar bump from radial locations a to b.

This defines the shape for the ring deformation, h[R]:
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In[13]:= rref � 1;

a � rref �1 
 1 � 4�;
b � rref �1 � 1 � 4�;
c � 1

2
�b � a�;

h�R�� :� EvaluateΗ R 
 c
b 
 c

Plot�h�R�, �R, a, b�, PlotRange � ��0, b � a � 2�, �0, 1���
h�R�

Out[18]=

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

Out[19]= 1 � 32 ��1 	 R�2 	 256 ��1 	 R�4

It is understood that the h[R] function must evaluate to zero for R<a and for R>b.

Reference shear strain within the zone a<R<b:
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In[20]:= Ξ�R�� :� 1

2
R h'�R�

Plot�Ξ�R�, �R, a, b�, PlotRange � ��0, b � a � 2�, All��
Ξ�R�

Out[21]= 0.5 1.0 1.5

�3

�2

�1

0

1

2

3

Out[22]=

1

2
�64 ��1 	 R� 	 1024 ��1 	 R�3 R

This is the shear strain in the material when the amplitude function g[t] is unity.

Step 2:  

In[23]:= � �
1 0 0

2 Ε 1 0

0 0 1

;

J � Det���
Out[24]= 1

Consider, as an example, simple neo-Hookian constitutive model. 

Under  conditions  of  simple  shear,  with  the  deformation  gradient  tensor  given  by the  formula  in  the  boxed

cell above.

Below is the calculation of Cauchy stress Σ
	

 from this deformation.

Keep in  mind  that  our  MMS calculation of  the  body force requires  components  of  the  PK1 stress,  not  the

Cauchy  stress,  so  an  appropriate  conversion  is  performed  using  standard  transformations  in  Continuum

Mechanics:
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In[25]:= Τ � 2 G Ε;
� � IdentityMatrix�3�;
Σ � Λ Log�J�

J
� � Μ

J
��.Transpose��� 
 ��;

Print�"Cauchy stress is ", Σ �� MatrixForm�;
Print�"But we need the PK1 stress, which is, for this model,..."�;
PK2 � Inverse���.�J Σ�.Transpose�Inverse����;
� � PK1 � �.PK2 �� Simplify;

� �� MatrixForm

Cauchy stress is

0 2 Ε Μ 0

2 Ε Μ 4 Ε2 Μ 0

0 0 0

But we need the PK1 stress, which is, for this model,...

Out[32]//MatrixForm=

0 2 Ε Μ 0

2 Ε Μ 0 0

0 0 0

Incidentally, we note that this simple shear motion induces a nonzero mechanical pressure:

In[33]:= pressure � 1

3
Tr�Σ�

Out[33]=

4 Ε2 Μ
3

Step 3:

Apply formula for evaluating the body forces components:

br � �R �g '�t� h�R��2 � 1

Ρ0

 Ξ '�R� d �11

d Ε � h '�R� �21 g�t� � 1

R
��11 � �22�

b� �R g ''�t� h�R� � 1

Ρ0

Ξ '�R� d �21

d Ε � h '�R� �11 g�t� � 1

R
��12 � �21�

In[34]:= br � 
R �g'�t� h�R��2 

1

Ρ0 �Ξ'�R� D����1, 1��, Ε� 
 h'�R� ���2, 1��� g�t� � 1

R
����1, 1�� 
 ���2, 2��� �.

Ε � g�t� Ξ�R� �� Simplify

Out[34]= �Π2 R 15 � 32 R 	 16 R24 Cos�Π t�2 	 �64 ��1 	 R� 	 1024 ��1 	 R�32 R Μ Sin�Π t�2
Ρ0
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In[35]:= b� � R g''�t� h�R� 

1

Ρ0 �Ξ'�R� D����2, 1��, Ε� � h'�R� ���1, 1��� g�t� � 1

R
����1, 2�� � ���2, 1��� �.

Ε � g�t� Ξ�R� �� Simplify

Out[35]= � 1

Ρ064 �45 	 188 R � 240 R
2 	 96 R3 Μ 	 Π2 R 15 � 32 R 	 16 R22 Ρ0 Sin�Π t�

Step 4:

body force vector relative to spatial cylindrical basis

In[36]:= bcylindrical � �br, b�, 0�;
bcylindrical �� MatrixForm

Out[37]//MatrixForm=

�Π2 R 15 � 32 R 	 16 R24 Cos�Π t�2 	 �64 ��1	R�	1024 ��1	R�32 R Μ Sin�Π t�2
Ρ0

� 64 �45	188 R�240 R2	96 R3 Μ	Π2 R 15�32 R	16 R22 Ρ0 Sin�Π t�
Ρ0
0

body force vector in Cartesian basis, recognizing that the current angular coordinate is the initial coordinate

� plus the material rotation angle Α:

In[38]:= � � � � Α

Out[38]= � 	 1 � 32 ��1 	 R�2 	 256 ��1 	 R�4 Sin�Π t�

In[39]:= dircos �
Cos��� Sin��� 0


Sin��� Cos��� 0

0 0 1

;

In[40]:= bCartesian � Transpose�dircos�.bcylindrical �� Simplify;

bCartesian �� MatrixForm

Out[41]//MatrixForm=

Cos� 	 15 � 32 R 	 16 R22 Sin�Π t� �Π2 R 15 � 32 R 	 16 R24 Cos�Π t�2 	 �64 ��1	R�	1024 ��1	R�32 R Μ
Ρ0

� 64 �45	188 R�240 R2	96 R3 Μ	Π2 R 15�32 R	16 R22 Ρ0 Cos�	15�32 R	16 R22 Sin�Π t� Sin�Π t�
Ρ0 	 �Π2 R 15 � 32 R 	 16 R2

0
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In[42]:= bcylindrical �. �R � 3 � 4�

Out[42]= 0, � 96 Μ Sin�Π t�
Ρ0 , 0

Verification that the spatial eqs of motion are satisfied by this MMS

Define a notationally appealing macro that  lets  us  access  vector  components  as  subscripts  instead of  the

ugly two-bracket [[ ... ]] syntax that is the default in Mathematica:

In[43]:= u�
j�� :� u��j��

Let’s  remind  ourselves  of  the  Cauchy  stress  tensor  in  the  case  of  simple  shear  without  superimposed

rotation:

In[44]:= Σ �� MatrixForm

Out[44]//MatrixForm=

0 2 Ε Μ 0

2 Ε Μ 4 Ε2 Μ 0

0 0 0

Based  on  our  analysis  of  this  MMS,  these  Cartesian  components  for  the  simple  shear  problem  without

superimposed rotation are the same as the spatial cylindrical components in the actual MMS problem.

Define a substitution pattern that  replaces the generic  strain  with  its  actual  value as  a function of  position

and time. Also include a substitution that specifies the current radial coordinate to be equal to the initial one:

In[45]:= sub � �Ε � g�t� Ξ�R�, R � r�

Out[45]= Ε � 1

2
�64 ��1 	 R� 	 1024 ��1 	 R�3 R Sin�Π t�, R � r

Obtain the cylindrical components of Cauchy stress as functions of position and time:

In[46]:= Σrr � Σ1,1
Out[46]= 0

In[47]:= Σr� � Σ1,2 ��. sub

Out[47]= �64 ��1 	 r� 	 1024 ��1 	 r�3 r Μ Sin�Π t�
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In[48]:= Σ�r � Σ2,1 ��. sub

Out[48]= �64 ��1 	 r� 	 1024 ��1 	 r�3 r Μ Sin�Π t�

In[49]:= Σ�� � Σ2,2 ��. sub

Out[49]= �64 ��1 	 r� 	 1024 ��1 	 r�32 r2 Μ Sin�Π t�2

Now compute the radial and tangential components of the stress divergence:

In[50]:= divSigr � 1

r
D�r Σrr, r� 
 Σ��

r
�� Simplify

divSig� � 1

r2
Dr2 Σ�r, r � 1

r
�Σ�r 
 Σr�� �� Simplify

Out[50]= ��64 ��1 	 r� 	 1024 ��1 	 r�32 r Μ Sin�Π t�2

Out[51]= 64 �45 	 188 r � 240 r2 	 96 r3 Μ Sin�Π t�

Recall that that  x� � r e�r
� R e�r

v� �R Ω e��,  

a� �R Ω� e�� �R Ω2 e�r

where 

Ω=g'[t] h[R]

and

Ω� =g''[t]  h[R]

In[52]:= Ω � g'�t� h�R� ��. sub

Ωdot � g''�t� h�R� ��. sub

Out[52]= Π 1 � 32 ��1 	 r�2 	 256 ��1 	 r�4 Cos�Π t�

Out[53]= �Π2 1 � 32 ��1 	 r�2 	 256 ��1 	 r�4 Sin�Π t�

Noting that the current mass density equals initial mass density divided by the Jacobian, the components of

density times acceleration as well as density times body force are given by
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In[54]:= Ρar � Ρ0
J


r Ω2

Ρbr � Ρ0
J

bcylindrical��1�� ��. sub

Out[54]= �Π2 1 � 32 ��1 	 r�2 	 256 ��1 	 r�42 r Ρ0 Cos�Π t�2

Out[55]= Ρ0 �Π2 r 15 � 32 r 	 16 r24 Cos�Π t�2 	 �64 ��1 	 r� 	 1024 ��1 	 r�32 r Μ Sin�Π t�2
Ρ0

In[56]:= Ρa� � Ρ0
J

�r Ωdot�

Ρb� � Ρ0
J

bcylindrical��2�� ��. sub

Out[56]= �Π2 1 � 32 ��1 	 r�2 	 256 ��1 	 r�4 r Ρ0 Sin�Π t�

Out[57]= �64 �45 	 188 r � 240 r2 	 96 r3 Μ 	 Π2 r 15 � 32 r 	 16 r22 Ρ0 Sin�Π t�

The following now confirms that the derived body force does indeed satisfy the equations of motion:

In[58]:= Simplify�divSigr � Ρbr 
 Ρar�
Simplify�divSig� � Ρb� 
 Ρa��

Out[58]= 0

Out[59]= 0

Visualization

In[60]:= SetDirectory�NotebookDirectory���
Out[60]= C:\ccccccccccToss\MPM�MATLAB�Code�Sadeghirad2018\BrannonMathematicaMMSfiles

Multiplier  on the time increment  between frames in movies  (set  =1 for  high fidelity,   set  =20 for just  a  few

frames for testing).

In[61]:= fac � 1

Out[61]= 1
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In[62]:= Rbar �.;
Η�Rbar�� :� 1 
 2 Rbar2 � Rbar4

In[64]:= Η'�Rbar�

Out[64]= �4 Rbar 	 4 Rbar3

In[65]:= rref � 1;

a � rref �1 
 1 � 4�;
b � rref �1 � 1 � 4�;
c � 1

2
�b � a�;

h�R�� :� Ifa $ R $ b, EvaluateΗ R 
 c
b 
 c, 0;

Plot�h�R�, �R, 0, 1.2 b�, PlotRange � All�
h�R�

Out[70]=

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

0.8

1.0

Out[71]= If 3
4
 R  5

4
, 1 � 32 ��1 	 R�2 	 256 ��1 	 R�4, 0

In[72]:= hprime�R�� :� If
a $ R $ b, EvaluateΗ' R 
 c
b 
 c, 0;

hprime�R�

Out[73]= If� 3

4
 R  5

4
, �16 ��1 	 R� 	 256 ��1 	 R�3, 0
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In[74]:= tref � 1;

g�t�� :� SinΠ t

tref


Plot�g�t�, �t, 0, 2 tref��

Out[76]=
0.5 1.0 1.5 2.0

�1.0

�0.5

0.5

1.0

Define a function to evaluate the continuum mapping,

x� �Q�� .X�

In[77]:= ppts � 30;

In[78]:= q�X1�, X2�, t�� :� Evaluate
 Cos�Α� 
Sin�Α�

Sin�Α� Cos�Α�  �. �Α � g�t� h�R�� �. �R � Sqrt��X1, X2�.�X1, X2���


In[79]:= map�X1�, X2�, t�� :� q�X1, X2, t�.�X1, X2�

In[80]:= Xval � 1.2 b;

dt � fac � .02 tref;
frames � Table�

ParametricPlot�map�X1, X2, tval�, �X1, 
Xval, Xval�, �X2, 
Xval, Xval�,
MeshStyle � ��Thick, Blue��, PlotPoints � ppts,

Axes � False, Frame � False�
, �tval, 0, 2 tref 
 dt, dt��;

Export�"GeneralizedVortexRing.gif", frames�
Out[83]= GeneralizedVortexRing.gif

The following exports single frames of the animation.
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To make an animated gif from the exported frames, execute the following on a Linux Workstation:

convert -verbose -delay 30 -loop 0 -density 100 gvs*.gif GeneralizedVortexSquareSmall.gif

This notebook currently does not export the images of the individual frames. If you want them, uncomment

the “do loop” below.

In[84]:= nfrms � 40;

inc � Max2, Round Length�frames�
nfrms

;
��Do�Export�"gvs"$'IntegerString�i,10,3�$'".gif",frames��i���,
�i,1,Length�frames�,inc����

Test frame to check if picture is as desired:

In[86]:= tval � 1.5 tref;

pic � ParametricPlot�map�R Cos�Θ�, R Sin�Θ�, tval�, �R, a, b�, �Θ, 0, 2 Π�,
MeshStyle � �None, �Thick, Black��, PlotPoints � ppts, BoundaryStyle � �Thick, Black�,
ColorFunction � Function��x, y, r, t�, Hue�t � �2 Pi���, ColorFunctionScaling � False,

Axes � False, Frame � False�
��Export�"GenVort.png",pic���

Out[87]=
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WARNING, BE PREPARED TO WAIT...

The following command takes about 15 minutes to finish.

In[88]:= dt � fac � .02 tref;
frames � Table�

ParametricPlot�map�R Cos�Θ�, R Sin�Θ�, tval�, �R, a, b�, �Θ, 0, 2 Π�,
MeshStyle � �None, �Thick, Black��, PlotPoints � ppts, BoundaryStyle � �Thick, Black�,
ColorFunction � Function��x, y, r, t�, Hue�t � �2 Pi���,
ColorFunctionScaling � False,

Axes � False, Frame � False�
, �tval, 0, 2 tref 
 dt, dt��;

Export�"GeneralizedVortexRing.gif", frames�
Out[90]= GeneralizedVortexRing.gif

The following exports single frames of the animation.

To make an animated gif from the exported frames, execute the following on a Linux Workstation:

convert -verbose -delay 30 -loop 0 -density 100 gvr*.gif GeneralizedVortexRingSmall.gif

This command is currently commented out because we don’t currently need single frames.

In[91]:= ��nfrms�40;
inc�Max2,Round Length�frames�

nfrms
;

Do�Export�"gvr"$'IntegerString�i,10,3�$'".gif",frames��i���,
�i,1,Length�frames�,inc����

Here is a hint of some things that can be done to alter the appearance

WARNING, BE PREPARED TO WAIT...

The following command takes about five minutes to finish.
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In[92]:= mesh1 � Table��X, �Thickness�0.005�, White, Opacity�1���, �X, 
Xval, Xval, Xval � 6��;
mesh2 � Table��X, �Thickness�0.005�, White, Opacity�1���, �X, 
Xval, Xval, Xval � 6��;

Xval � 1.2 b;

dt � fac � 0.02 tref;

frames � Table�
ParametricPlot�map�X1, X2, tval�, �X1, 
Xval, Xval�, �X2, 
Xval, Xval�,
PlotStyle � Directive�Opacity�0.999�, Blue�,
Mesh � �mesh1, mesh2�, PlotPoints � ppts,

Axes � False, Frame � False�
, �tval, 0, 2 tref 
 dt, dt��;

frames��5��
Export�"GeneralizedVortexSquareBlue.gif", frames�

Out[97]=

Out[98]= GeneralizedVortexSquareBlue.gif
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In[99]:= mesh1 � Table��X, �Thickness�0.005�, White, Opacity�1���, �X, 
Xval, Xval, Xval � 10��;
mesh2 � Table��X, �Thickness�0.005�, White, Opacity�1���, �X, 
Xval, Xval, Xval � 10��;
ParametricPlotmap�X1, X2, .5�, �X1, 
Xval, Xval�, �X2, 
Xval, Xval�,
MeshFunctions � �)3 &, )4 &�,

ColorFunction � Function�X1, X2, x1, x2�, rdum � SqrtX12 � X22 
 a
b 
 a ;

If�0 $ rdum $ 1, Hue�rdum�, Black�, ColorFunctionScaling � False,

Mesh � �mesh1, mesh2�,
Axes � False

Out[101]=
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In[102]:= strain�Rbar�� :� 1

2
Rbar � 1

b � c 
 1 Η'�Rbar�;
peakstrain � Abs�N�Minimize��strain�Rbar�, 
1 $ Rbar $ 1�, Rbar����1���
intensity�Rbar�� :� EvaluateIf
1 $ Rbar $ 1,

strain�Rbar�
peakstrain

, 0
Plot�intensity�Rbar�, �Rbar, 
2, 2��

Out[103]= 3.53282

Out[105]=
�2 �1 1 2

�1.0

�0.5

0.5

In[106]:= PlotAbsintensity x 
 c
b 
 a, �x, 
c � �b 
 a�, 2 b�

Out[106]=

�2 �1 1 2

0.2

0.4

0.6

0.8

1.0

26 BrannonGeneralizedVortexMMSderivation.nb



In[107]:= mesh1 � Table��X, �Thickness�0.005�, White, Opacity�1���, �X, 
Xval, Xval, Xval � 8��;
mesh2 � Table��X, �Thickness�0.005�, White, Opacity�1���, �X, 
Xval, Xval, Xval � 8��;
ParametricPlotmap�X1, X2, .2�, �X1, 
Xval, Xval�, �X2, 
Xval, Xval�,
MeshFunctions � �)3 &, )4 &�,

ColorFunction � Function�X1, X2, x1, x2�, rdum � SqrtX12 � X22 
 c
b
a
2

;

Hue�Abs�intensity�rdum���, ColorFunctionScaling � False,

Mesh � �mesh1, mesh2�,
Axes � False

Out[109]=

Enjoy playing around with this stuff!
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